Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
EBioMedicine ; 92: 104574, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2308166

ABSTRACT

BACKGROUND: The SARS-CoV-2 global pandemic has fuelled the generation of vaccines at an unprecedented pace and scale. However, many challenges remain, including: the emergence of vaccine-resistant mutant viruses, vaccine stability during storage and transport, waning vaccine-induced immunity, and concerns about infrequent adverse events associated with existing vaccines. METHODS: We report on a protein subunit vaccine comprising the receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein, dimerised with an immunoglobulin IgG1 Fc domain. These were tested in conjunction with three different adjuvants: a TLR2 agonist R4-Pam2Cys, an NKT cell agonist glycolipid α-Galactosylceramide, or MF59® squalene oil-in-water adjuvant, using mice, rats and hamsters. We also developed an RBD-human IgG1 Fc vaccine with an RBD sequence of the immuno-evasive beta variant (N501Y, E484K, K417N). These vaccines were also tested as a heterologous third dose booster in mice, following priming with whole spike vaccine. FINDINGS: Each formulation of the RBD-Fc vaccines drove strong neutralising antibody (nAb) responses and provided durable and highly protective immunity against lower and upper airway infection in mouse models of COVID-19. The 'beta variant' RBD vaccine, combined with MF59® adjuvant, induced strong protection in mice against the beta strain as well as the ancestral strain. Furthermore, when used as a heterologous third dose booster, the RBD-Fc vaccines combined with MF59® increased titres of nAb against other variants including alpha, delta, delta+, gamma, lambda, mu, and omicron BA.1, BA.2 and BA.5. INTERPRETATION: These results demonstrated that an RBD-Fc protein subunit/MF59® adjuvanted vaccine can induce high levels of broadly reactive nAbs, including when used as a booster following prior immunisation of mice with whole ancestral-strain spike vaccines. This vaccine platform offers a potential approach to augment some of the currently approved vaccines in the face of emerging variants of concern, and it has now entered a phase I clinical trial. FUNDING: This work was supported by grants from the Medical Research Future Fund (MRFF) (2005846), The Jack Ma Foundation, National Health and Medical Research Council of Australia (NHMRC; 1113293) and Singapore National Medical Research Council (MOH-COVID19RF-003). Individual researchers were supported by an NHMRC Senior Principal Research Fellowship (1117766), NHMRC Investigator Awards (2008913 and 1173871), Australian Research Council Discovery Early Career Research Award (ARC DECRA; DE210100705) and philanthropic awards from IFM investors and the A2 Milk Company.


Subject(s)
COVID-19 , Carrier Proteins , Cricetinae , Humans , Mice , Rats , Animals , COVID-19 Vaccines , SARS-CoV-2 , Protein Subunits , COVID-19/prevention & control , Australia , Adjuvants, Immunologic , Antibodies, Neutralizing , Antibodies, Viral
2.
Microbiol Spectr ; : e0503522, 2023 Mar 14.
Article in English | MEDLINE | ID: covidwho-2264681

ABSTRACT

Oral delivery of an inexpensive COVID-19 (coronavirus disease 2019) vaccine could dramatically improve immunization rates, especially in low- and middle-income countries. Previously, we described a potential universal COVID-19 vaccine, rLVS ΔcapB/MN, comprising a replicating bacterial vector, LVS (live vaccine strain) ΔcapB, expressing the highly conserved SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) membrane and nucleocapsid (N) proteins, which, when administered intradermally or intranasally, protects hamsters from severe COVID-19-like disease after high-dose SARS-CoV-2 respiratory challenge. Here, we show that oral administration of the vaccine also protects against high-dose SARS-CoV-2 respiratory challenge; its protection is comparable to that of intradermal, intranasal, or subcutaneous administration. Hamsters were protected against severe weight loss and lung pathology and had reduced oropharyngeal and lung virus titers. Protection against weight loss and histopathology by the vaccine, which in mice induces splenic and lung cell interferon gamma in response to N protein stimulation, was correlated in hamsters with pre-challenge serum anti-N TH1-biased IgG (IgG2/3). Thus, rLVS ΔcapB/MN has potential as an oral universal COVID-19 vaccine. IMPORTANCE The COVID-19 pandemic continues to rage into its fourth year worldwide. To protect the world's population most effectively from severe disease, hospitalization, and death, a vaccine is needed that is resistant to rapidly emerging viral variants of the causative agent SARS-CoV-2, inexpensive to manufacture, store, and transport, and easy to administer. Ideally, such a vaccine would be capable of oral administration, especially in resource-poor countries of the world where there are shortages of needles, syringes and trained personnel to administer injectable vaccines. Here, we show that oral administration of a bacterium-vectored vaccine meeting all these criteria protects naturally susceptible Syrian hamsters from severe COVID-19-like disease, including severe weight loss and lung pathology, after high-dose SARS-CoV-2 respiratory challenge. As the vaccine is based upon inducing immunity to highly conserved SARS-CoV-2 membrane and nucleocapsid proteins, as opposed to the rapidly mutating Spike protein, it should remain resistant to newly emerging SARS-CoV-2 variants.

3.
Viruses ; 14(10)2022 10 04.
Article in English | MEDLINE | ID: covidwho-2066555

ABSTRACT

A preliminary vaccination trial against the emergent pathogen, SARS-CoV-2, was completed in captive black-footed ferrets (Mustela nigripes; BFF) to assess safety, immunogenicity, and anti-viral efficacy. Vaccination and boosting of 15 BFF with purified SARS-CoV-2 S1 subunit protein produced a nearly 150-fold increase in mean antibody titers compared to pre-vaccination titers. Serum antibody responses were highest in young animals, but in all vaccinees, antibody response declined rapidly. Anti-viral activity from vaccinated and unvaccinated BFF was determined in vitro, as well as in vivo with a passive serum transfer study in mice. Transgenic mice that received BFF serum transfers and were subsequently challenged with SARS-CoV-2 had lung viral loads that negatively correlated (p < 0.05) with the BFF serum titer received. Lastly, an experimental challenge study in a small group of BFF was completed to test susceptibility to SARS-CoV-2. Despite viral replication and shedding in the upper respiratory tract for up to 7 days post-challenge, no clinical disease was observed in either vaccinated or naive animals. The lack of morbidity or mortality observed indicates SARS-CoV-2 is unlikely to affect wild BFF populations, but infected captive animals pose a potential risk, albeit low, for humans and other animals.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Viral , Antiviral Agents , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Ferrets , SARS-CoV-2
4.
Emerg Infect Dis ; 28(9): 1852-1855, 2022 09.
Article in English | MEDLINE | ID: covidwho-1933543

ABSTRACT

We assessed 2 wild canid species, red foxes (Vulpes vulpes) and coyotes (Canis latrans), for susceptibility to SARS-CoV-2. After experimental inoculation, red foxes became infected and shed infectious virus. Conversely, experimentally challenged coyotes did not become infected; therefore, coyotes are unlikely to be competent hosts for SARS-CoV-2.


Subject(s)
COVID-19 , Coyotes , Animals , Foxes , SARS-CoV-2
5.
Viruses ; 14(1)2021 12 21.
Article in English | MEDLINE | ID: covidwho-1580416

ABSTRACT

Coronavirus disease 2019 (COVID-19) has claimed the lives of millions of people worldwide since it first emerged. The impact of the COVID-19 pandemic on public health and the global economy has highlighted the medical need for the development of broadly acting interventions against emerging viral threats. Galidesivir is a broad-spectrum antiviral compound with demonstrated in vitro and in vivo efficacy against several RNA viruses of public health concern, including those causing yellow fever, Ebola, Marburg, and Rift Valley fever. In vitro studies have shown that the antiviral activity of galidesivir also extends to coronaviruses. Herein, we describe the efficacy of galidesivir in the Syrian golden hamster model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Treatment with galidesivir reduced lung pathology in infected animals compared with untreated controls when treatment was initiated 24 h prior to infection. These results add to the evidence of the applicability of galidesivir as a potential medical intervention for a range of acute viral illnesses, including coronaviruses.


Subject(s)
Adenine/analogs & derivatives , Adenosine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Pyrrolidines/therapeutic use , SARS-CoV-2/drug effects , Adenine/pharmacology , Adenine/therapeutic use , Adenosine/pharmacology , Adenosine/therapeutic use , Animals , Antiviral Agents/pharmacology , COVID-19/pathology , COVID-19/virology , Cell Line , Cricetinae , Disease Models, Animal , Humans , Lung/drug effects , Lung/pathology , Lung/virology , Mesocricetus , Pyrrolidines/pharmacology , Viral Load/drug effects
6.
COVID ; 1(3):602-607, 2021.
Article in English | MDPI | ID: covidwho-1512153

ABSTRACT

SARS-CoV-2 is frequently transmitted by aerosol, and the sterilization of the virus in airflows has numerous potential applications. We evaluated a UV-C illuminator similar to what might be incorporated into tubing of a mechanical ventilator for its ability to block transmission of the airborne virus from infected to naïve hamsters. Hamsters protected by the UV system were consistently protected from infection, whereas non-protected hamsters uniformly became infected and displayed virus shedding and high burdens of virus in respiratory tissues. The efficiency and speed with which the virus in flowing air was inactivated using this system suggests several applications for mitigating transmission of this virus.

7.
Emerg Microbes Infect ; 10(1): 2199-2201, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1505680

ABSTRACT

We report pilot studies to evaluate the susceptibility of common domestic livestock (cattle, sheep, goat, alpaca, rabbit, and horse) to intranasal infection with SARS-CoV-2. None of the infected animals shed infectious virus via nasal, oral, or faecal routes, although viral RNA was detected in several animals. Further, neutralizing antibody titres were low or non-existent one month following infection. These results suggest that domestic livestock are unlikely to contribute to SARS-CoV-2 epidemiology.


Subject(s)
COVID-19/veterinary , Host Specificity , Livestock/virology , SARS-CoV-2/pathogenicity , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Camelids, New World/virology , Cattle/virology , Chlorocebus aethiops , Disease Reservoirs/virology , Goats/virology , Horses/virology , Host Specificity/immunology , Humans , Nasal Cavity/virology , RNA, Viral/analysis , Rabbits/virology , Rectum/virology , Respiratory System/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sheep/virology , Species Specificity , Vero Cells , Virus Shedding , Viscera/virology
8.
NPJ Vaccines ; 6(1): 122, 2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1475297

ABSTRACT

Early in the SARS-CoV-2 pandemic concerns were raised regarding infection of new animal hosts and the effect on viral epidemiology. Infection of other animals could be detrimental by causing clinical disease, allowing further mutations, and bares the risk for the establishment of a non-human reservoir. Cats were the first reported animals susceptible to natural and experimental infection with SARS-CoV-2. Given the concerns these findings raised, and the close contact between humans and cats, we aimed to develop a vaccine candidate that could reduce SARS-CoV-2 infection and in addition to prevent spread among cats. Here we report that a Replicon Particle (RP) vaccine based on Venezuelan equine encephalitis virus, known to be safe and efficacious in a variety of animal species, could induce neutralizing antibody responses in guinea pigs and cats. The design of the SARS-CoV-2 spike immunogen was critical in developing a strong neutralizing antibody response. Vaccination of cats was able to induce high neutralizing antibody responses, effective also against the SARS-CoV-2 B.1.1.7 variant. Interestingly, in contrast to control animals, the infectious virus could not be detected in oropharyngeal or nasal swabs of vaccinated cats after SARS-CoV-2 challenge. Correspondingly, the challenged control cats spread the virus to in-contact cats whereas the vaccinated cats did not transmit the virus. The results show that the RP vaccine induces protective immunity preventing SARS-CoV-2 infection and transmission. These data suggest that this RP vaccine could be a multi-species vaccine useful to prevent infection and spread to and between animals should that approach be required.

9.
Emerg Infect Dis ; 27(8): 2073-2080, 2021 08.
Article in English | MEDLINE | ID: covidwho-1319583

ABSTRACT

Wild animals have been implicated as the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but it is largely unknown how the virus affects most wildlife species and if wildlife could ultimately serve as a reservoir for maintaining the virus outside the human population. We show that several common peridomestic species, including deer mice, bushy-tailed woodrats, and striped skunks, are susceptible to infection and can shed the virus in respiratory secretions. In contrast, we demonstrate that cottontail rabbits, fox squirrels, Wyoming ground squirrels, black-tailed prairie dogs, house mice, and racoons are not susceptible to SARS-CoV-2 infection. Our results expand the knowledge base of susceptible species and provide evidence that human-wildlife interactions could result in continued transmission of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Animals, Wild , Disease Susceptibility , Humans , Mammals , Mice
10.
Proc Natl Acad Sci U S A ; 117(42): 26382-26388, 2020 10 20.
Article in English | MEDLINE | ID: covidwho-807892

ABSTRACT

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached nearly every country in the world with extraordinary person-to-person transmission. The most likely original source of the virus was spillover from an animal reservoir and subsequent adaptation to humans sometime during the winter of 2019 in Wuhan Province, China. Because of its genetic similarity to SARS-CoV-1, it is probable that this novel virus has a similar host range and receptor specificity. Due to concern for human-pet transmission, we investigated the susceptibility of domestic cats and dogs to infection and potential for infected cats to transmit to naive cats. We report that cats are highly susceptible to infection, with a prolonged period of oral and nasal viral shedding that is not accompanied by clinical signs, and are capable of direct contact transmission to other cats. These studies confirm that cats are susceptible to productive SARS-CoV-2 infection, but are unlikely to develop clinical disease. Further, we document that cats developed a robust neutralizing antibody response that prevented reinfection following a second viral challenge. Conversely, we found that dogs do not shed virus following infection but do seroconvert and mount an antiviral neutralizing antibody response. There is currently no evidence that cats or dogs play a significant role in human infection; however, reverse zoonosis is possible if infected owners expose their domestic pets to the virus during acute infection. Resistance to reinfection holds promise that a vaccine strategy may protect cats and, by extension, humans.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/virology , Pneumonia, Viral/virology , Animals , Animals, Domestic , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , Betacoronavirus/immunology , COVID-19 , Cats , Coronavirus Infections/pathology , Coronavirus Infections/transmission , Disease Models, Animal , Dogs , Female , Male , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/transmission , SARS-CoV-2 , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL